(2x=5)(3x^2-10)

Simple and best practice solution for (2x=5)(3x^2-10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x=5)(3x^2-10) equation:



(2x=5)(3x^2-10)
We move all terms to the left:
(2x-(5)(3x^2-10))=0
We calculate terms in parentheses: +(2x-5(3x^2-10)), so:
2x-5(3x^2-10)
We multiply parentheses
-15x^2+2x+50
Back to the equation:
+(-15x^2+2x+50)
We get rid of parentheses
-15x^2+2x+50=0
a = -15; b = 2; c = +50;
Δ = b2-4ac
Δ = 22-4·(-15)·50
Δ = 3004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3004}=\sqrt{4*751}=\sqrt{4}*\sqrt{751}=2\sqrt{751}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{751}}{2*-15}=\frac{-2-2\sqrt{751}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{751}}{2*-15}=\frac{-2+2\sqrt{751}}{-30} $

See similar equations:

| 6x(4x-10)=90 | | -5-5x=7x-125 | | 7(x+4)=5(x+18) | | 5(7b+13)=100 | | -6=3x-7x+10 | | 3h-5h-27=81 | | 3x-10=-5x | | -8(-2-7r)=-205 | | 14+7.3=1x+12.8 | | -14=5x-7x+2 | | 8(-2-7r)=-205 | | 5x+16=-7 | | x-9-4x=12x | | 12/1x=4 | | 24x=108 | | 180-2x-9-x=27 | | -.5(x-4.2=6.4 | | x(0.11248)+x=960 | | 3(2x+1)-7=63 | | -5x+10-x=-26 | | 7(x-8)=2; | | x(0.11248+x=960 | | 45=13+8a | | 7+4x+6x=-3 | | 29/20=p-1/2 | | 3(2y−1)−5y=2(y+1)−2(y+3 | | 26x-3=25x+1 | | 12x+5=85 | | 32+(8x+12)=x | | 3x+2(x-5)=30 | | p+12/5=6 | | 3x-3-2x=-9 |

Equations solver categories